SMML estimators for exponential families with continuous sufficient statistics

نویسنده

  • James G. Dowty
چکیده

The minimum message length principle is an information theoretic criterion that links data compression with statistical inference. This paper studies the strict minimum message length (SMML) estimator for d-dimensional exponential families with continuous sufficient statistics, for all d. The partition of an SMML estimator is shown to consist of convex polytopes (i.e. convex polygons when d = 2). A simple and explicit description of these polytopes is given in terms of the assertions and coding probabilities, namely that the i polytope is exactly the set of data points where the posterior probability corresponding to the i assertion and i coding probability is greater than or equal to the other posteriors. SMML estimators which partition the data space into n regions are therefore determined by n(d + 1) numbers which describe the assertions and coding probabilities, and we give n(d+1) equations that these numbers must satisfy. Solving these equations with a quasiNewton method then gives a practical method for constructing higher-dimensional SMML estimators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SMML Estimators for 1-Dimensional Continuous Data

Amethod is given for calculating the strict minimummessage length (SMML) estimator for 1-dimensional exponential families with continuous sufficient statistics. A set of n equations are found that the n cut-points of the SMML estimator must satisfy. These equations can be solved using Newton’s method and this approach is used to produce new results and to replicate results that C. S. Wallace ob...

متن کامل

SMML estimators for linear regression and tessellations of hyperbolic space

The strict minimum message length (SMML) principle links data compression with inductive inference. The corresponding estimators have many useful properties but they can be hard to calculate. We investigate SMML estimators for linear regression models and we show that they have close connections to hyperbolic geometry. When equipped with the Fisher information metric, the linear regression mode...

متن کامل

Inferences for Extended Generalized Exponential Distribution based on Order Statistics

‎Recently‎, ‎a new distribution‎, ‎named as extended generalized exponential distribution‎, ‎has been introduced by Kundu and Gupta (2011). ‎In this paper‎, ‎we consider the extended generalized exponential distribution with known shape parameters α and β. ‎At first‎, ‎the exact expressions for marginal and product moments of o...

متن کامل

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

Dimension Reduction in Regressions with Exponential Family Predictors

We present first methodology for dimension reduction in regressions with predictors that, given the response, follow one-parameter exponential families. Our approach is based on modeling the conditional distribution of the predictors given the response, which allows us to derive and estimate a sufficient reduction of the predictors. We also propose a method of estimating the forward regression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1302.0581  شماره 

صفحات  -

تاریخ انتشار 2013